Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Type of study
Publication year range
1.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611820

ABSTRACT

The level of fluoride ions (F-) in the human body is closely related to various pathological and physiological states, and the rapid detection of F- is important for studying physiological processes and the early diagnosis of diseases. In this study, the detailed sensing mechanism of a novel high-efficiency probe (PBT) based on 2-(2'-hydroxyphenyl)-benzothiazole derivatives towards F- has been fully investigated based on density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. F- attacks the O-P bond of PBT to cleavage the dimethylphosphinothionyl group, and the potential products were evaluated by Gibbs free energy and spectroscopic analyses, which ultimately identified the product as HBT-Enol1 with an intramolecular hydrogen bond. Bond parameters, infrared vibrational spectroscopy and charge analysis indicate that the hydrogen bond is enhanced at the excited state (S1), favoring excited state intramolecular proton transfer (ESIPT). The mild energy barrier further evidences the occurrence of ESIPT. Combined with frontier molecular orbital (FMO) analysis, the fluorescence quenching of PBT was attributed to the photoinduced electron transfer (PET) mechanism and the fluorescence turn-on mechanism of the product was attributed to the ESIPT process of HBT-Enol1.

2.
J Mater Chem B ; 12(5): 1372-1378, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240560

ABSTRACT

Owing to the efficient non-radiative relaxation by the free rotation of the B-phenyl moiety, monophenyl substituted aza-BODIPY on the boron centre with near-infrared absorption has high photothermal conversion efficiency, which is highly desirable for a photothermal therapy agent.


Subject(s)
Boron Compounds , Photothermal Therapy , Rotation
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123011, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37418901

ABSTRACT

Excited intramolecular proton transfer (ESIPT) has been widely studied as a model system for proton transfer. In recent years, materials and biological systems containing two proton transfers have received special attention from researchers. In this work, the excited state intramolecular double-proton-transfer (ESIDPT) mechanism of a fluorescent compound based on an oxadiazole derivative, 2,5-bis-[5-(4-tert-butyl-phenyl)-[1,3,4]oxadiazol-2-yl]-benzene-1,4-diol (DOX), has been comprehensively investigated through theoretical calculations. The potential energy surface curve of the reaction shows that ESIDPT can occur in the first excited state. This work proposes a new and reasonable fluorescence mechanism based on previous experiments, which has theoretical significance for the future research of DOX compounds in biomedicine and optoelectronics.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122706, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37054571

ABSTRACT

Fluoropurine analogues are a kind of unnatural bases, which are widely used in chemistry, biological science, pharmacy and other fields. At the same time, fluoropurine analogues of aza-heterocycles play an important role in medicinals research and development. In this work, the excited state behavior of a group of newly developed fluoropurine analogues of aza-heterocycles, triazole pyrimidinyl fluorophores, was comprehensively studied. The reaction energy profiles indicate that excited state intramolecular proton transfer (ESIPT) is difficult to happen, which is further proved by fluorescent spectra results. This work proposed a new and reasonable fluorescence mechanism based on the original experiment, and found that the large Stokes shift of the triazole pyrimidine fluorophore is due to the intramolecular charge transfer (ICT) process of the excited state. Our new discovery is of great significance for the application of this group of fluorescent compounds in other fields and the regulation of fluorescence properties.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122318, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36623347

ABSTRACT

Amino 2-(2'-hydroxyphenyl)benzazole derivatives are a class of molecules with excellent photophysical properties. Most of them can be applied as a fluorescent probe via the excited-state intramolecular proton transfer (ESIPT) process. In this work, we focus on the effects of heteroatoms (O, S) and substituents (acetylacetone, hydrogen) in the derivatives. Using DFT/TDDFT methods with the B3LYP-D3BJ functionals, the absorption and emission peaks are in good agreement with the experimental data. Results of optimized structures, infrared vibrational spectra, and reduced density gradient present the existence of the ESIPT process in the S1 state in these molecules, it also indirectly shows that the heteroatom S is more than O, and the substituent acetylacetone is more than hydrogen has stronger hydrogen bonds. The proton transfer (PT) potential energy curves (PECs) qualitatively show that it is easier for the heteroatom S to induce ESIPT than that of O. The same for the substituent acetylacetone than that of hydrogen. Under the joint influence of the simultaneous stacking of heteroatom S and acetylacetone substituent, the energy barrier of the PT process can be effectively lowered, realizing a synergistic strategy, which can provide some guidance for the design of fluorescent materials.

6.
J Chromatogr Sci ; 61(8): 790-798, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-36111432

ABSTRACT

Microwave-assisted dispersive liquid-liquid microextraction (MADLLME) coupled with high-performance liquid chromatography (HPLC) with diode array detector was used for the extraction and determination of three biogenic amines (BAs), including tryptamine, histamine and phenylethylamine in beverages (beer, cherry juice and white spirit). Compared with solid-phase extraction, solid-phase microextraction and liquid-phase microextraction, which is more solvent use with lower extraction efficiency, this MADLLME method obviously shortened analytical time, the rapid heating of aqueous samples with non-ionizing electromagnetic radiation, a lower solvent use and enhanced extraction efficiency. Because of good extraction for three BAs, [3C6PC14][FeCl4] was used as an extraction solvent. We showed a tunable selectivity of magnetic ionic liquids (MILs) toward extracting BAs by changing anion or cation due to the modification of the interaction between the MIL and the BAs. Extraction conditions including the type and volume of extraction solvent, microwave power, microwave-assisted extraction time, sample pH, disperser and interference experiment were investigated. Under the optimal conditions, a good linear relationship was found in the concentration range of 100-2,000 ng mL-1 for three BAs with correlation coefficient (R2) of 0.995-0.999. The limit of detections (S/N = 3) and limit of quantitations (S/N = 10) were in the range of 3.46-4.96 ng mL-1 and 10.44-14.88 ng mL-1, respectively. The recoveries of three targets were in the range of 84.3-108.5%, and the relative standard deviations based on the peak areas for six replicate analyses of beverages spiked with 10, 50 and 100 ng mL-1 of each biogenic amine were lower than 7.9%. This method has also been successfully applied to analyze the real samples at three different spiked concentrations, and excellent results have been obtained.


Subject(s)
Ionic Liquids , Liquid Phase Microextraction , Chromatography, High Pressure Liquid/methods , Liquid Phase Microextraction/methods , Microwaves , Biogenic Amines , Solvents/chemistry , Ionic Liquids/chemistry , Beverages/analysis
7.
Mater Today Bio ; 16: 100446, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36199559

ABSTRACT

By the introduction of the -tBu groups into aza-BODIPY core, di-tert-butyl-substituted aza-BODIPYs at 3,5-sites (tBuazaBDPs) were prepared for the first time. Based on the X-ray analysis of CN-tBuazaBDP, this molecular structure is twisted. Near-infrared dye SMe-tBuazaBDP has the ultra-large Stokes shift (152 â€‹nm) in aza-BODIPY system, combining with the twisted intramolecular charge transfer and the free rotation of the -tBu groups at 3,5-sites. Although the barrier-free rotors of the distal -tBu groups in SMe-tBuazaBDP result in low fluorescence quantum yield, the photothermal conversion efficiency is markedly enhanced. SMe-tBuazaBDP nanoparticles with low power laser irradiation were proven to block cancer cell cycle, inhibit cancer cell proliferation, and induce cancer cell apoptosis in photothermal therapy (PTT). The strategy of "direct attachment of -tBu groups to aza-BODIPY core" gives a new design platform for a photothermal therapy agent.

8.
ACS Omega ; 7(25): 21912-21924, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35785301

ABSTRACT

As one of the most important energetic material molecules, hexanitrohexaazaisowurtzitane (CL-20) can only be synthesized using an amine with a benzyl group. Moreover, the reaction mechanism remains unexplored and the special role of the benzyl group has not been revealed. To address these issues, we perform an extensive theoretical study to investigate the synthesis mechanism of CL-20 precursor HBIW by employing density functional theory. Our calculated results demonstrate that the benzyl group can reduce the energy of the intermediate and the energy barrier of the rate-determining step due to the π-π stack interaction between two benzene rings of the benzyl group. For the first time, we revealed that the reactions can produce 16 intermediates with different chiralities during the formation of the first two side five-membered rings and only two of which can further form the bottom six-membered ring and finally obtain the product HBIW. The steric hindrance effect of the benzyl group leads to the formation of a higher-energy intermediate first, thereby providing an opportunity to correct the wrong chirality. All of these factors make the diimine with the benzyl group the most suitable reactant for the synthesis of CL-20.

9.
J Phys Chem A ; 126(18): 2788-2793, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35502941

ABSTRACT

H2S is an important signal molecule in living systems and related with many physiological processes and diseases. Rapid detection of H2S, hence, is important for studying physiological processes and early diagnosis of diseases. Deep insight into the sensing mechanism is significant and inspiring for the design and modification of high-efficiency H2S probes. The current study has theoretically investigated the recognition and fluorescence mechanism of a newly reported high-efficiency H2S probe. The recognition mechanism is determined to be the reaction between the probe and HS- anion, the rationality of which is further confirmed from the fluorescence property of the recognition product. The non-fluorescence property of the probe attributes to a photoinduced electron transfer process, and the turn-on fluorescence upon exposure to H2S exhibits an intramolecular charge transfer property according to frontier molecular orbital analysis.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Electron Transport , Fluorescence , Hydrogen Sulfide/analysis
10.
J Phys Chem A ; 126(10): 1666-1673, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35258304

ABSTRACT

Interpreting the initial decomposition mechanism is important for evaluating the thermal stability of explosives. In this study, we theoretically investigated the initial thermal decomposition reactions for two typical energetic materials, FOX-7 and RDX, in both the gas phase and crystal phase. Single molecular decomposition pathways in the gas phase are calculated using the density functional theory (DFT) method, and the crystal phase reactions are simulated through the MM/DFT-based ONIOM method. The calculation results indicate that the crystal environment has a significant influence on the initial thermal decomposition mechanism of FOX-7 and RDX. The cage effect induced by the crystal environment greatly confines molecular mobility and diffusion, rendering the generated small molecules to react with the remaining fragment and yield new decomposition channels compared with the gas phase condition. The crystal packing structures and intermolecular interactions (hydrogen bonds/π-π stacking) significantly increase the reaction barriers of FOX-7 and RDX, leading to the crystal phase reactions being more difficult to occur than in the gas phase. Since the practical application of explosives is mostly in the crystal state, it is important to consider the environmental effects on the initial decomposition reactions. The same insight can also be relevant for other energetic materials.

11.
J Phys Chem A ; 126(5): 685-690, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35104131

ABSTRACT

Rapid detection of hidden nitramine explosives in public areas is a pressing concern for public safety. Deep insight into the sensing mechanism is significant and inspiring to the design of new high-efficiency nitramine probes. This study has theoretically investigated the recognition and fluorescence mechanism of a newly reported high-efficiency nitramine probe, proposing a new reaction pattern and sensing product for the probe with the photodegraded radical nitro dioxide (NO2) of nitramines. The rationality of the new detection product is confirmed by the fluorescence properties, IR analysis, and energy profiles. The recognition mechanism is found to be an H-abstraction reaction via NO2 and the turn-off fluorescence mechanism is suggested as a photoinduced electron transfer (PET) process based on the results of the frontier molecular orbital (FMO) analysis. The high selectivity of the probe toward NO2 is illustrated based on the energy analysis of the sensing products.


Subject(s)
Explosive Agents , Aniline Compounds , Fluorescent Dyes , Nitrobenzenes
12.
ACS Appl Mater Interfaces ; 13(43): 51414-51425, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34689563

ABSTRACT

Inkless printing based on rewritable papers has recently made great progress because it can improve the utilization rate of papers, which is of great significance for saving resources and protecting the environment. Among them, light-responsive rewritable papers (LRPs) are a hot research topic because light is clean, easily available, wavelength and intensity adjustable, and noncontacting. However, the photochromic material, as the imaging substance of LRPs, is easily affected by environmental conditions, resulting in insufficient time to read the information. In view of this, we designed and constructed an acid/base tunable diarylethene molecular system that can effectively adjust the photochromic properties by reversibly changing the electron density of the diarylethene photoreaction center through protonation and demonstrated its potential as an imaging material with a longer legible time. What makes us more satisfied is that the acidification can not only extend the legible time of carrying information but also bring a clear and stable absorption/fluorescence imaging dual mode, which can better reflect details and improve contrast. Therefore, we believe that this tunable photochromic diarylethene molecule is a potential imaging material for the development of new LRPs.

13.
RSC Adv ; 8(59): 34000-34003, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-35548804

ABSTRACT

A practical sulfa-Michael/aldol cascade reaction of 1,4-dithiane-2,5-diol and α-aryl-ß-nitroacrylates has been developed, which allows efficient access to functionalized 2,5-dihydrothiophenes bearing a quaternary carbon stereocenter in moderate to good yields with high enantioselectivities.

14.
J Phys Chem A ; 121(46): 8807-8814, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29087192

ABSTRACT

3,7-Dihydroxy-4-oxo-2-phenyl-4H-chromene-8-carbaldehyde in methylcyclohexane solvent was chosen to investigate excited-state intramolecular proton-transfer mechanisms by using a time-dependent density functional theory method. The results show that the single- and double-proton-transfer mechanisms are related and exist simultaneously in the excited states, which differs from those reported in previous experiments ( Serdiuk , I. E. et al. RSC Adv. 2015 , 5 , 102191 - 102203 ). The analyses of bond distance, bond angle, the molecular electrostatic potential surface, and infrared vibrational spectra show that two intramolecular hydrogen bonds were formed in the S0 state, and upon excitation, the two intramolecular hydrogen bonds were strengthened in the S1 state, which can facilitate the proton-transfer process. The calculated absorption and fluorescence spectra agree well with the experimental results. The constructed potential energy surfaces on the S1 and S0 states can explain the proton-transfer process. In the S1 state, three types of proton-transfer processes exist as type 1 (single-proton transfer: H2 from O1 to O3), type 2 (single-proton transfer: H5 from O4 to O6), and type 3 (double-proton transfer). The relationship of the potential barrier is type 1 (1.02 kcal/mol) < type 2 (1.57 kcal/mol) < type 3 (2.29 kcal/mol), which indicates that type 1 is most susceptible to proton transfer.

SELECTION OF CITATIONS
SEARCH DETAIL
...